Tempered infinitely divisible distributions and processes

نویسندگان

  • Michele Leonardo Bianchi
  • Svetlozar T. Rachev
  • Young Shin Kim
  • Frank J. Fabozzi
چکیده

In this paper, we construct the new class of tempered infinitely divisible (TID) distributions. Taking into account the tempered stable distribution class, as introduced by in the seminal work of Rosińsky [10], a modification of the tempering function allows one to obtain suitable properties. In particular, TID distributions may have exponential moments of any order and conserve all proper properties of the Rosiński setting. Furthermore, we prove that the modified tempered stable distribution is TID and give some further parametric example. M.S.C. classification: 60E07, 60G52.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing VaR and AVaR In Infinitely Divisible Distributions

In this paper we derive closed-form solutions for the cumulative density function and the average value-at-risk for five subclasses of the infinitely divisible distributions: classical tempered stable distribution, Kim-Rachev distribution, modified tempered stable distribution, normal tempered stable distribution, and rapidly decreasing tempered stable distribution. We present empirical evidenc...

متن کامل

Modeling of ‎I‎nfinite Divisible Distributions Using Invariant and Equivariant Functions

‎Basu’s theorem is one of the most elegant results of classical statistics‎. ‎Succinctly put‎, ‎the theorem says‎: ‎if T is a complete sufficient statistic for a family of probability measures‎, ‎and V is an ancillary statistic‎, ‎then T and V are independent‎. ‎A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics‎. ‎In addition ...

متن کامل

Tempered stable distributions and processes in finance: numerical analysis

Most of the important models in finance rest on the assumption that randomness is explained through a normal random variable. However there is ample empirical evidence against the normality assumption, since stock returns are heavy-tailed, leptokurtic and skewed. Partly in response to those empirical inconsistencies relative to the properties of the normal distribution, a suitable alternative d...

متن کامل

Financial Market Models with Lévy Processes and Time-Varying Volatility

Asset management and pricing models require the proper modeling of the return distribution of financial assets. While the return distribution used in the traditional theories of asset pricing and portfolio selection is the normal distribution, numerous studies that have investigated the empirical behavior of asset returns in financial markets throughout the world reject the hypothesis that asse...

متن کامل

Markov Processes with Infinitely Divisible Limit Distributions: Some Examples

J.BSTllCT A set of examples is described which suggests that members of a certain class of Markov processes have infinitely divisible limit distributions. A counter example rilles out such a possibility and raises the question of what further restrictions are required to guarantee infinitely divisible limits. Some related examples illustrate the same occurrence of infinitely divisible limit dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008